
www.manaraa.com

STREAM: The Stanford Stream Data Manager
(Demonstration Proposal)

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar,
Keith Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom

�

Stanford University
http://www-db.stanford.edu/stream

1 Introduction

We propose to demonstrate a Data Stream Management System (DSMS) called STREAM, for STanford stREam datA
Manager. The challenges in building a DSMS instead of a traditional DBMS arise from two fundamental differences:

� In addition to managing traditional stored data such as relations, a DSMS must handle multiple continuous,
unbounded, possibly rapid and time-varying data streams.

� Due to the continuous nature of the data, a DSMS typically supports long-running continuous queries, which
are expected to produce answers in a continuous and timely fashion.

STREAM is a general-purpose DSMS that supports a declarative query language and is designed to cope with high data
rates and large numbers of continuous queries. A description of our current (Fall 2002) language design, algorithms,
system design, and system implementation efforts can be found in [MW

�

03]. Needless to say, we expect additional
functionality to be in place by Spring 2003. Our proposed demonstration will focus on two aspects of our system:

� Registering and observing multiple continuous queries over multiple continuous data streams. Queries can be
registered using our declarative query language CQL (Section 3.1), or by entering query plans directly (Sec-
tion 3.2).

� An interactive interface for online visualization and management of query execution and resource utilization,
and for easy experimentation with DSMS query processing techniques (Section 3.3).

2 System Architecture

A simplified view of a Data Stream Management System is shown in Figure 1(a). On the left are the incoming Data
Streams, which produce data indefinitely and drive query processing. Although we are concerned primarily with
the online processing of continuous queries, in many applications stream data also may be copied to an Archive, for
preservation and possible offline processing of expensive analysis or mining queries. Finally, processing of continuous
queries typically requires intermediate state, which we denote as Scratch Store in the figure. This state could be stored
and accessed in memory or on disk, although in STREAM we currently use memory only.

Across the top of the figure we see that users or applications register Continuous Queries, which remain active in
the system until they are explicitly deregistered. Results of continuous queries are generally transmitted as output data
streams, but they could also be relational results that are updated over time (similar to materialized views).

Currently STREAM offers a Web system interface through direct HTTP, and we are planning to expose the system
as a Web service through SOAP. Thus, remote applications can be written in any language and on any platform. They
can register queries and receive the results of a query as a streaming HTTP response in XML. For human users, we
have developed a Web-based GUI exposing the same functionality, as well as providing an interactive interface for
visualizing and modifying system behavior (see Section 3.3).

2.1 Query Plans

When a continuous query is registered using our declarative query language CQL it is compiled into a query plan.
Currently a separate query plan is generated for each query, although we expect to develop plan merging algorithms,

�
Contact author: widom@stanford.edu

1

www.manaraa.com

s2s1

σ s4s3

O2
O3

O1

q1
q2

q
4

Scheduler

Q1
Q

2

q3

R S T

Figure 1: (a) Simplified DSMS. (b) STREAM Query plans.

especially in cases when approximate query results are tolerated. Alternatively, query plans can be entered directly,
and plans can be merged “by hand.” A query plan in our system runs continuously and is composed of three different
types of components:

� Query operators, similar to those in a traditional DBMS. Each operator reads a stream of tuples from a set of
input queues, processes the tuples based on its semantics, and writes its output tuples into a single output queue.

� Inter-operator queues, also similar to the approach taken by some traditional DBMS’s. Queues connect different
operators and define the paths along which tuples flow as they are being processed.

� Synopses, used to maintain state associated with operators and discussed in more detail next.

Operators implemented so far include the standard relational operators (including aggregation), windowed versions of
some operators (e.g., join, duplicate elimination), and sampling operators. Note that the queues and synopses in the
query plans active in the system comprise the Scratch Store depicted in Figure 1(a).

A synopsis summarizes the tuples seen so far at some intermediate operator in a running query plan, as needed for
future evaluation of that operator. For example, for full precision a join operator must remember all the tuples it has
seen so far on each of its input streams, so it maintains one synopsis for each (similar to a symmetric hash join). On
the other hand, simple filter operators, such as selection and duplicate-preserving projection, do not require a synopsis
since they need not maintain state. So far in our system we have focused primarily on sliding-window synopses,
although we also have implemented reservoir sample synopses and will soon add Bloom filters [MW

�

03].
Figure 1(b) illustrates plans for two queries,

���
and

���
. Together the plans contain three operators � � – ��� , four

synopses � � – �
	 (two per join operator), and four queues � � – ��	 . Query
� �

is a selection over a join of two streams
and � . Query

� �
is a join of three streams, , � , and � . The two plans share a subplan joining streams and � by

sharing its output queue � � . Execution of query operators is controlled by a global scheduler. The scheduler currently
uses a simple round-robin scheme for scheduling operators that are ready to execute. We plan to implement more
sophisticated scheduling schemes shortly.

2.2 Plan Implementation

In the implementation of our system, operators, queues, and synopses all are subclasses of a generic Entity class.
Each entity has a table of attribute-value pairs called its Control Table (CT for short), and each entity exports an
interface to query and update its CT. (CT contents can also be updated by the entity itself.) The CT serves two
purposes in our system so far. First, some CT attributes are used to dynamically control the behavior of an entity. For
example, the amount of memory used by a synopsis � can be controlled by updating the value of attribute Memory
in � ’s control table. Second, some CT attributes are used to collect statistics about entity behavior. For example, the

2

www.manaraa.com

number of tuples that have passed through a queue � is stored in attribute Count of � ’s control table. The CT approach
has been instrumental in implementing the management interface described in Section 3.3.

3 Demonstration Content

Our demonstration will consist of three parts:

(1) Basic stream registration, specification of continuous queries in CQL, and observation of streamed query results.

(2) Direct entry of query plans through the graphical interface and using XML.

(3) Online visualization and management of query execution and resource allocation through the graphical interface.

3.1 The CQL Language

The declarative query interface to STREAM uses a language we developed called CQL, for Continuous Query Lan-
guage. Syntactically, CQL is a superset of SQL (although many esoteric or complex SQL constructs are not yet
implemented), with constructs added for sliding windows and for sampling.

�
However, the semantics of continu-

ous queries over streams (and relations) turns out to be fairly subtle, and some subtleties of CQL semantics will be
illustrated in the demonstration. Several example CQL queries are provided in [MW

�

03].

3.2 Direct Entry of Query Plans

STREAM provides a graphical interface for users to create query plans and enter them directly into the system,
bypassing the declarative CQL interface. The query plan construction interface was created initially so that system
developers could experiment with the query processing engine. The same interface is useful for a “power user” who
wants to override the plan generator. The interface also can be used to create merged plans or to merge components of
separately generated plans.

Since we want continuous queries in a DSMS to persist until explicitly deregistered, our main-memory plan struc-
tures (as in Figure 1(b)) are mirrored in XML files. We expose this feature to users so they can create, edit, and
transfer XML plans offline and enter them directly into the system. The XML plan interface offers our third (and most
primitive) method of registering continuous queries.

3.3 Plan Execution and Management Interface

We are developing a comprehensive interactive interface for STREAM users, system administrators, and system de-
velopers to visualize and modify query plans as well as query-specific and system-wide resource allocation while the
system is in operation. Note that the rapid implementation of this interface is enabled by our generic CT structure
described in Section 2.2.

3.3.1 Query Plan Execution

STREAM provides a graphical interface to visualize the execution of any registered continuous query. Recall that
query plans are implemented as networks of entities (Section 2.2), each of which is an operator, a queue, or a synopsis.
The query plan execution visualizer provides the following features.

(1) View the structure of the plan and its component entities.

(2) View specific attributes of an entity, e.g., the amount of memory being used by a synopsis in the plan.

(3) View data moving through the plan, e.g., tuples entering and leaving inter-operator queues, and synopsis contents
growing and shrinking as operators execute. Depending on the scope of activity individual tuples or tuple counts
can be visualized.

�

Actually our windowing construct is derived from SQL-99, and our sampling construct is similar to a recently proposed stan-
dard, so syntactically there is little new in our language.

3

www.manaraa.com

3.3.2 Global System Behavior

The query execution visualizer described in the previous section is useful for visualizing the execution and resource
utilization of a single query or a small number of queries that may share plan components. However, a system admin-
istrator or developer might want to obtain a more global picture of DSMS behavior. STREAM provides an interface
to visualize system-wide query execution and resource utilization information. The supported features include:

(1) View the entire set of query plans in the system, with the level of detail dependent on the number and size of
plans.

(2) View the fraction of memory used by each query in the system, or in more detail by each queue and each
synopsis.

(3) View the fraction of processor time consumed by each query in the system.

3.3.3 Controlling System Behavior

Visualizing query-specific and system-wide execution and resource allocation information is important for system
administrators and developers to understand and tune the performance of a DSMS running long-lived continuous
queries. A sophisticated DSMS should adapt automatically to changing stream characteristics and changing query
load, but it is still useful for “power users” and certainly useful for system developers to have the capability to control
certain aspects of system behavior. We support the following features:

(1) Run-time modification of memory allocation, e.g., increasing the memory allocated to one synopsis while de-
creasing memory for another.

(2) Run-time modification of plan structure, e.g., changing the order of synopsis joins in a query over multiple
streams, or changing the type of synopsis used by a join operator.

(3) Run-time modification of the scheduling policy, choosing several alternative policies.

4 Demonstration Application Domain

Much of our work has been driven by the network monitoring domain, for which a DSMS is particularly well-
suited [BSW01]. We are likely to use this domain for at least a portion of our demonstration, although we plan to
explore a number of alternate application domains in the coming months. One unusual application we are investigat-
ing is system reflection. Since our CT interface (Section 2.2) can generate many continuous streams of many different
internal STREAM system measurements, we are exploring whether we can use the STREAM query processor itself
to support components of the monitoring interface described in Section 3.3, or even to automatically adapt STREAM
system behavior. If successful, system reflection will form a component of our demonstration.

5 Conclusion and Acknowledgments

Please visit http://www-db.stanford.edu/stream for continuously updated information. We have bene-
fited greatly from discussions with our non-coding participants in the STREAM project and from interactions with the
wider data streams research community.

References

[BSW01] S. Babu, L. Subramanian, and J. Widom. A data stream management system for network traffic manage-
ment. In Proceedings of the Workshop on Network-Related Data Management, Santa Barbara, California,
May 2001.

[MW
�

03] R. Motwani, J. Widom, et al. Query processing, approximation, and resource management in a data
stream management system. In Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR), Monterey, California, January 2003. To appear.

4

